

SECURITY & INSPECTION PRODUCTS

Linatron M Модульный высокоэнергетический Рентгеновский источник

Линейный ускоритель серии Linatron-М построен на модульной основе. Пульт управления, модуляторный шкаф и радиочастотный блок одинаковы для всех конфигураций системы. В зависимости от требований к мощности излучения меняется только излучатель. Linatron-М разработан для использования как в мобильных, так и в стационарных условиях.

1.0 Стандартная комплектация и услуги.

1.1 Пульт управления.

Стандартный пульт управления имеет сенсорный экран. По запросу поставляется настольный пульт управления с ПК (см. раздел 4.7)

пульт управления с сенсорным экраном

- 1.2 Излучатель. (малое рассеянное излучение 0,1%)
- 1.3 Компактный высокочастотный блок.
- 1.4 Модуляторный шкаф / Распределительный шкаф с выходами для внешних сигнальных устройств.
- 1.5 Терморегулятор.

Предназначен для поддержания температуры компонентов в пределах 30°C.

- 1.6 Стандартный комплект запасных частей. Включает в себя около 40 наименований.
- 1.7 Комплект соединительных кабелей и шлангов.
- 1.8 Инструкции по эксплуатации. В комплект поставки входят два набора инструкций по управлению и обслуживанию системы.
- 1.9 Руководство монтажом и пуско-наладкой.
- 1.10 1 год гарантии.

2.0 Характеристики системы.

2.1 Качество рентгеновского излучения оценивается по Слою Половинного Ослабления (СПО) для стали. Эти данные соответствуют номинальной энергии излучения, указанной в таблице 1. Значения СПО получены усреднением многочисленных измерений.

излучатель и радиочастотный блок

- 2.2 Мощность дозы излучения* (область 10 x 10 см) Максимальная доза излучения при длительном режиме работы на расстоянии 1 м от мишени по центральной оси приведена в таблице 1.
- * Мощность дозы снижается при использовании выравнивающего фильтра.

Таблица 1			
Номинальная энергия (МЭВ)	СПО (см)	Равномерность (% при ±7,5°)	Мощность дозы излучения (Гр/мин)
0,95	1,49	≥ 82,0	0,25
3,0	2,31	≥ 72,5	3,00
6,0	2,79	≥ 62,0	8,00
9,0	3,04	≥ 55,0	30,0
	0,95 3,0 6,0	(WЭВ) ((W3B) Номинальная (W3B) 3,0 (СW) 2,27,5 (СП) (СW) 2,27,5 (СП) 2,79 (СП) 2,27,5 (СП) 2,79 (СП) 2,27,5 (CП) 2,27,5

Примечание: Возможны другие энергии, включая опцию двойной энергии (см. раздел 4.5)

- 2.3 Размер поля излучения. Конус с углом 30° или квадрат с углом $22,5^{\circ}$. (см. раздел 4.1)
- 2.4 Размер фокусного пятна. Не превышает 2,0 мм в диаметре (см. раздел 4.1)
- 2.5 Симметричность излучения Ассиметрия пучка не превышает 5% в пределах $\pm~7,5\degree$ от центральной оси по вертикали.

2.6 Радиографическое качество Система обеспечивает чувствительность 1-2T по ASTM E-94 или подобному в пределах, указанных в таблице 2.

Таблица 2			
Модель	Номинальная энергия (МэВ)	Диапазон (мм)	
M3	3,0	38-203	
M6	6,0	51-254	
М9	9,0	76-381	

2.7 Стандартная рассеянная радиация

Рассеянное излучение указано для горизонтальной оси в 1 м от центра под углом от оси 60° и больше, вне первичного излучения. Значения в Таблице 3 даны относительно мощности дозы центрального первичного луча и измерены с коллиматором 10 см х 10 см. Рассеянное излучение приведено при полностью закрытом первичном излучении. Опции меньшего рассеянного излучения см. в разделе 4.2.

Таблица 3		
Модель	Рассеянное излучение	
	(относительное)	
M1, M3, M6, M9	1x10 ⁻³	

Если Linatron работает на энергии ≥6,1 МэВ, нужно обеспечивать нейтронную защиту. Излучение 6,1 МэВ может производить до 1,0x10⁻⁵ бэр нейтронов на 1 рад рентгеновского излучения в первичном луче. Излучение 9,0 МэВ может производить до 1,0x10⁻⁴ бэр нейтронов на 1 рад рентгеновского излучения в первичном луче. Руководство по защите смотрите в справочниках NCPR 144 и NCPR 79.

3.0 Требования, предъявляемые к установке

- 3.1 Требования к электропитанию.
- 3.1.1 Система работает от одного источника питания мощностью 15 кВА 400 В /50 Гц;
- 3 фазы, земля, нейтраль (5-проводная схема), не менее 40 A (пик-пик) на фазу.

Стабильность напряжения ± 10%

3.1.2 Терморегулятор подключается к отдельному источнику питания 13 кВА.

Имеются модели с напряжением питающей сети 220 и 380 В.

Для встроенного блока нагрева может требоваться отдельный источник питания мощностью 10 кВА.

3.2 Условия окружающей среды.

3.2.1 Работа в помещении.

Температура в помещении должна быть в пределах 4...35° С, максимальная относительная влажность не более 90% (без конденсации).

3.2.2 Работа вне помещения.

По вопросу работы линейного ускорителя вне помещений свяжитесь с производителем.

3.2.3 Вентиляция.

Приблизительные значения рассеиваемой тепловой мощности при работе системы на полной мощности приведены ниже:

- излучатель/ВЧ блок: 1 кВт - модуляторный шкаф: 2 кВт - терморегулятор: 6-12 кВт
- сенсорная панель управления: незначительно

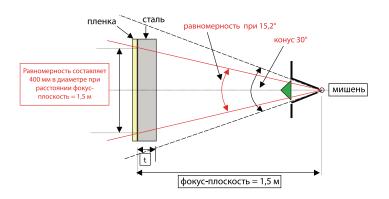
модулятор

4.0 Дополнительное оборудование

4.1 Заказные коллиматоры.

Нестандартные размеры поля изготавливаются по заказу. Имеется также моторный коллиматор, позволяющий быстро менять ограничение луча.

4.2 Сведения о дополнительном экранировании приведены в таблице 4.


Таблица 4				
модель	рассеянное излучение (относительное)		вес В.Ч. блока / излучателя (кг)	
о сверх низкое		ультра низкое	сверх низкое	ультра низкое
M1	2 x 10 ⁻⁵	2,5 x 10 ⁻⁶	2.100	5.100
M3	2 x 10 ⁻⁵	2,5 x 10 ⁻⁶	2.100	5.100
M6	2 x 10 ⁻⁵	2,5 x 10 ⁻⁶	2.100	5.100
M9	2 x 10 ⁻⁵	нет	2.100	нет

4.3 Стабилизатор напряжения.

Рекомендуется установка стабилизатора при колебаниях напряжения более \pm 5% Также может быть заказан понижающий или повышающий трансформатор для получения нужного для Linatron или терморегулятора напряжения. Стабилизаторы сертифицированы по СЕ и UL.

4.4 Выравнивающий фильтр.

Данная опция обеспечивает более равномерную интенсивность луча в экспонируемой области и доступна при 3,5, 5, 6 и 9 МэВ. Использование выравнивающего фильтра снижает дозу излучения (см. таблицу ниже).

Таблица 5			
Энергия (МэВ)	Равномерность	Мощность дозы излучения (Гр/мин)	Проникновение по стали (мм)
3,5	лучше 80%	2 или больше	50-250
5	лучше 80%	3 или больше	50-250
6	лучше 80%	3.5 или больше	50-250
9	лучше 80%	12 или больше	50-380

примечание: эффективный размер поля указанной равномерности составляет 400 мм в диаметре при расстоянии фокус-плоскость - 1,5 м. Равномерность измеряется по плотности экспонируемой пленки.

4.5 Двойная энергия Значения двойной энергии приведены в Таблице 6.

Таблица 6					
Модель	Режим	Ном. энергия (МэВ)	СПО (см)	Равном-ть излучения (% при ±7,5°)	Макс. мощность излучения (Гр/мин)
M3A	низ.	1,0	1,6	≥ 82,0	0,25
MSA	выс.	3,0	2,31	≥ 72,5	3,00
M6A	низ.	3,5	2,44	≥ 71,0	2,50
MOA	выс.	6,0	2,79	≥ 62,0	8,00
М9А	низ.	5,0	2,69	≥ 65,5	6,00
	низ.	6,0	2,79	≥ 62,0	10,0
	выс.	9,0	3,04	≥ 55,0	30,0

4.6 Малое фокусное пятно. Только для М9 (от 0,75 до 1,5 мм)

4.7 Настольный пульт управления с ПК.

Настольный пульт управления с ПК обеспечивает такое же управление системой, что и пульт с сенсорным экраном, но имеет больший экран и возможность хранения данных. Рассеиваемая тепловая мощность - 0,5 кВт.

4.8 Система лазерного наведения.

Для более точного наведения рентгеновского луча на просвечиваемый объект может поставляться устанавливаемый внутри точечный лазер.

4.9 Переменный внешний коллиматор.

Переменный внешний коллиматор с зависимыми шторками устанавливается на передней стороне излучателя. Размер поля излучения регулируется от 1° до 24°. Также возможна установка поворотного коллиматора с поворотом от -50° до $+50^{\circ}$.

Переменный внешний коллиматор

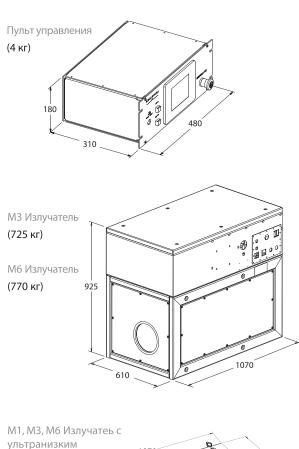
4.10 Внешний интерфейс заказчика

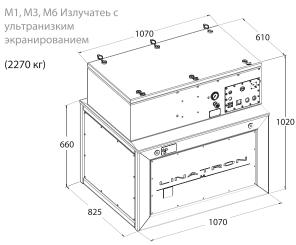
На модуляторе имеется 37-контактный разъем Amphenol для подключения оборудования заказчика. Имеются следующие сигналы:

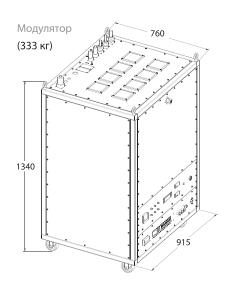
• Внешний пуск • Сигнал предупреждения • Аварийное выключение • Задание рентгеновских параметров • Внешняя блокировка • Состояние прогрева и Включенного питания • Сигнальные лампы • Индикация ошибок и сброс.

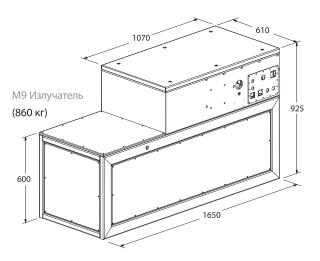
Полное описание этих сигналов смотрите в документе # 100015302.

Маркировка СЕ


Все блоки линейного ускорителя спроектированы и изготовлены в соответствии с директивами по Электромагнитной Совместимости 89/336/EEC и Низковольтному оборудованию 73/23/EEC


Маркировка ETL


Все модели Linatron-M отвечают UL STD 61010A-1 и сертифицированы по CSA 1010.1


Varian Security & Inspection Products, Las Vegas Facility, Системы управления качеством отвечают ISO 9001:2000.

5.0 Габаритные размеры

